博客
关于我
01背包问题
阅读量:798 次
发布时间:2023-04-16

本文共 993 字,大约阅读时间需要 3 分钟。

为了解决这个问题,我们需要使用动态规划来解决0-1背包问题。我们有N个物品,每个物品都有体积和价值,背包的容量是V。目标是选择一些物品,使得总体积不超过背包容量,同时总价值最大化。

方法思路

我们使用一个二维数组dp,其中dp[i][j]表示处理前i个物品,且背包容量为j时的最大价值。初始时,dp[0][j]和dp[i][0]都为0,因为没有物品或者背包容量为0时,价值都是0。

对于每个物品i,我们有两种选择:装或者不装。如果不装,dp[i][j]就等于dp[i-1][j]。如果装,检查背包的剩余容量j是否足够容纳物品i的体积vi。如果够的话,dp[i][j]就等于dp[i-1][j - vi] + wi,否则只能不装。

解决代码

n, v_total = map(int, input().split())v = [0] * (n + 1)w = [0] * (n + 1)for i in range(1, n + 1):    vi, wi = map(int, input().split())    v[i] = vi    w[i] = wi# 初始化动态规划数组dp = [[0] * (v_total + 1) for _ in range(n + 1)]for i in range(1, n + 1):    for j in range(1, v_total + 1):        if j >= v[i]:            dp[i][j] = max(dp[i-1][j], dp[i-1][j - v[i]] + w[i])        else:            dp[i][j] = dp[i-1][j]print(dp[n][v_total])

代码解释

  • 读取输入:首先读取物品数量n和背包容量v_total,然后读取每个物品的体积和价值,存入数组v和w。
  • 初始化dp数组:创建一个大小为(n+1) x (v_total+1)的二维数组dp,初始值为0。
  • 填充dp数组:遍历每个物品i和每个容量j,更新dp表。对于每个物品i和容量j,如果容量足够装下物品i,则比较不装和装的价值,取最大值;否则不装。
  • 输出结果:dp[n][v_total]即为最大价值。
  • 这种方法的时间复杂度是O(N*V),适用于N和V不超过1000的情况。

    转载地址:http://ypgfk.baihongyu.com/

    你可能感兴趣的文章
    mysql主从同步配置方法和原理
    查看>>
    mysql主从复制 master和slave配置的参数大全
    查看>>
    MySQL主从复制几个重要的启动选项
    查看>>
    MySQL主从复制及排错
    查看>>
    mysql主从复制及故障修复
    查看>>
    MySQL主从复制的原理和实践操作
    查看>>
    webpack loader配置全流程详解
    查看>>
    mysql主从复制,读写分离,半同步复制实现
    查看>>
    MySQL主从失败 错误Got fatal error 1236解决方法
    查看>>
    MySQL主从架构与读写分离实战
    查看>>
    MySQL主从篇:死磕主从复制中数据同步原理与优化
    查看>>
    mysql主从配置
    查看>>
    MySQL之2003-Can‘t connect to MySQL server on ‘localhost‘(10038)的解决办法
    查看>>
    MySQL之CRUD
    查看>>
    MySQL之DML
    查看>>
    Mysql之IN 和 Exists 用法
    查看>>
    MYSQL之REPLACE INTO和INSERT … ON DUPLICATE KEY UPDATE用法
    查看>>
    MySQL之SQL语句优化步骤
    查看>>
    MYSQL之union和order by分析([Err] 1221 - Incorrect usage of UNION and ORDER BY)
    查看>>
    Mysql之主从复制
    查看>>