博客
关于我
01背包问题
阅读量:798 次
发布时间:2023-04-16

本文共 993 字,大约阅读时间需要 3 分钟。

为了解决这个问题,我们需要使用动态规划来解决0-1背包问题。我们有N个物品,每个物品都有体积和价值,背包的容量是V。目标是选择一些物品,使得总体积不超过背包容量,同时总价值最大化。

方法思路

我们使用一个二维数组dp,其中dp[i][j]表示处理前i个物品,且背包容量为j时的最大价值。初始时,dp[0][j]和dp[i][0]都为0,因为没有物品或者背包容量为0时,价值都是0。

对于每个物品i,我们有两种选择:装或者不装。如果不装,dp[i][j]就等于dp[i-1][j]。如果装,检查背包的剩余容量j是否足够容纳物品i的体积vi。如果够的话,dp[i][j]就等于dp[i-1][j - vi] + wi,否则只能不装。

解决代码

n, v_total = map(int, input().split())v = [0] * (n + 1)w = [0] * (n + 1)for i in range(1, n + 1):    vi, wi = map(int, input().split())    v[i] = vi    w[i] = wi# 初始化动态规划数组dp = [[0] * (v_total + 1) for _ in range(n + 1)]for i in range(1, n + 1):    for j in range(1, v_total + 1):        if j >= v[i]:            dp[i][j] = max(dp[i-1][j], dp[i-1][j - v[i]] + w[i])        else:            dp[i][j] = dp[i-1][j]print(dp[n][v_total])

代码解释

  • 读取输入:首先读取物品数量n和背包容量v_total,然后读取每个物品的体积和价值,存入数组v和w。
  • 初始化dp数组:创建一个大小为(n+1) x (v_total+1)的二维数组dp,初始值为0。
  • 填充dp数组:遍历每个物品i和每个容量j,更新dp表。对于每个物品i和容量j,如果容量足够装下物品i,则比较不装和装的价值,取最大值;否则不装。
  • 输出结果:dp[n][v_total]即为最大价值。
  • 这种方法的时间复杂度是O(N*V),适用于N和V不超过1000的情况。

    转载地址:http://ypgfk.baihongyu.com/

    你可能感兴趣的文章
    multipart/form-data与application/octet-stream的区别、application/x-www-form-urlencoded
    查看>>
    mysql cmake 报错,MySQL云服务器应用及cmake报错解决办法
    查看>>
    Multiple websites on single instance of IIS
    查看>>
    mysql CONCAT()函数拼接有NULL
    查看>>
    multiprocessing.Manager 嵌套共享对象不适用于队列
    查看>>
    multiprocessing.pool.map 和带有两个参数的函数
    查看>>
    MYSQL CONCAT函数
    查看>>
    multiprocessing.Pool:map_async 和 imap 有什么区别?
    查看>>
    MySQL Connector/Net 句柄泄露
    查看>>
    multiprocessor(中)
    查看>>
    mysql CPU使用率过高的一次处理经历
    查看>>
    Multisim中555定时器使用技巧
    查看>>
    MySQL CRUD 数据表基础操作实战
    查看>>
    multisim变压器反馈式_穿过隔离栅供电:认识隔离式直流/ 直流偏置电源
    查看>>
    mysql csv import meets charset
    查看>>
    multivariate_normal TypeError: ufunc ‘add‘ output (typecode ‘O‘) could not be coerced to provided……
    查看>>
    MySQL DBA 数据库优化策略
    查看>>
    multi_index_container
    查看>>
    mutiplemap 总结
    查看>>
    MySQL Error Handling in Stored Procedures---转载
    查看>>